Modeling image patches with a directed hierarchy of Markov random fields
نویسندگان
چکیده
We describe an efficient learning procedure for multilayer generative models that combine the best aspects of Markov random fields and deep, directed belief nets. The generative models can be learned one layer at a time and when learning is complete they have a very fast inference procedure for computing a good approximation to the posterior distribution in all of the hidden layers. Each hidden layer has its own MRF whose energy function is modulated by the top-down directed connections from the layer above. To generate from the model, each layer in turn must settle to equilibrium given its top-down input. We show that this type of model is good at capturing the statistics of patches of natural images.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملAnalyzing and modeling urban sprawl and land use changes in a developing city using a CA-Markovian approach
Mashhad City, according to the latest official statistics of the country is the second populated city after Tehran and is the biggest metropolis in the east of Iran. Considering the rapid growth of the population over the last three decades, the city’s development area has been extended, significantly. This significant expansion has impacted natural lands on suburb and even some parts e.g. rang...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملHidden Markov Random Fields
A noninvertible function of a first order Markov process, or of a nearestneighbor Markov random field, is called a hidden Markov model. Hidden Markov models are generally not Markovian. In fact, they may have complex and long range interactions, which is largely the reason for their utility. Applications include signal and image processing, speech recognition, and biological modeling. We show t...
متن کامل